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SUMMARY 

The solution of the non-linear set of equations arising from the application of the finite element 
method to  non-Newtonian fluid flow problems often requires large amounts of computer time. Four iteration 
schemes (Picard, Newton-Raphson, Broyden and Dominant Eigenvalue method) are compared in three 
different flow geometries using a shear-thinning fluid model. Points of comparison involve the computer 
time necessary to converge the equations, ease of implementation, radius of convergence and rate of 
convergence. 
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INTRODUCTION 

Finite element simulation of the steady state Navier-Stokes equations for shear-thinning fluids 
involves the solution of a large set of non-linear equations. A non-linear equation solving 
algorithm must be robust with respect to the degree of non-linearity and starting point and be 
capable of handling very large equation sets if it is to be used in a large variety of physical situations. 
The rank order of algorithm efficiency may change depending on the specific problem and the 'best' 
algorithm may be different depending upon the stage in the solution procedure in solving a 
particular problem. A strategy for solving the non-linear equation sets may be necessary where 
different algorithms are used in sequence for the desirable properties that each may possess. An 
efficient steady state non-linear equation technique is an important basis for the solution of the 
time-dependent problem. 

Non-linearities arise from a number of different sources. For example, it is well known that high 
Reynolds number flows cause convergence problems due to the non-linearity from the convective 
terms. Non-Newtonian problems have the stress tensor as a non-linear function of the rate-of- 
strain tensor. Free boundary problems are very non-linear when the free surface position co- 
ordinates are determined with the nodal velocities and pressures. 

The difficulty of solving non-linear fluid flow problems can often be related to a parameter 
intrinsic to the fluid/geometry system. For convective problems the degree of difficulty increases 
with the Reynolds number of the fluid. Shear-thinning fluids described by a power law model.' 

lead to increasingly non-linear equations as n is decreased. The convergence of free boundary 
problems is sensitive to the curvature of the free surface and to the application of the boundary 
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conditions at the contact lines between fluid and solid. The solution of very non-linear equations 
requires an incremental approach. For convection-dominated flow, the creeping flow case is used 
as a starting solution and the Reynolds number is incremented in a series of steps to the desired 
value. Similarly, in shear-thinning fluids a series of problems with decreasing power law index are 
solved and for free boundary problems a series of interface shapes are examined until all the 
boundary conditions are satisfied. In polymer-processing simulations it is common to find 
combinations of these non-linearities in a single problem; for example, the flow of a shear-thinning 
polymer melt into a mould cavity. 

For most polymer-processing studies the non-Newtonian effects (viscoelasticity, shear thinning) 
are more significant than the convective effects because of the low Reynolds numbers involved. 
This work focuses on finite element equation convergence problems for shear-thinning effects and 
is complementary to previous 

When the Galerkin finite element method is applied to the fluid momentum equations, the 
resulting non-linear equations are in the following form: 

K(u)u = F, (2) 
where u is a vector containing all the velocities and pressures at the finite element nodes. There are 
many solution procedures available, but in this work four are compared: fixed point iteration 
(Picard iteration, PI), Newton-Raphson (NR), a quasi-Newton method by Broyden (BR) and 
the Dominant Eigenvalue method, Kaniel-Stein version (DE). There has been considerable work 
done with the first three methods and we propose the DE as an alternative. A comparative 
study of NR,PI and BR on convective and shear-thinning flow problems was also undertaken 
by Gartling4 and E ~ ~ g e l m a n . ~  

We shall use the terminology that ‘problem’ refers to the solution of the finite element equations 
at the parameter of interest (e.g., n = 0.25 for a shear-thinning fluid), ‘subproblem’ refers to the 
solution of the finite element equations at some intermediate value of the parameter (e.g., solve the 
equations for n = 0.5 to obtain a starting guess for n = 0.25) and ‘iterations’ refer to the number of 
applications of a particular convergence scheme to obtain the solution for a subproblem. 

Selection of a robust non-linear equation solving technique involves two important issues. The 
radius of convergence is the difference between the initial trial vector for the unknowns and the true 
solution vector such that the equation set can be solved starting from the initial trial vector. For a 
given problem parameter value, it is desirable to have the radius of convergence to be as large as 
possible. The rate of convergence of the iterates should be maximized to minimize the number of 
iterations. Each of the iteration methods mentioned previously has its own strengths and 
weaknesses with regard to these two issues, which can conflict with each other as in a method that 
has a high rate of convergence but small radius of convergence. 

PROBLEMS 

The test problems are creeping flows (Re = 0) in the following standard geometries: square 
duct,6-8 driven cavity’ and a 4:l planar contraction. 

The first problem considers the fully developed flow of an inelastic power law fluid in a square 
duct (Figure l(a)). The flow is assumed to be unidirectional and is governed by the Poisson 
equation with the no-slip boundary conditions 
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(C) 
Figure 1. Problem statement: (a) square duct; (b) driven cavity; (c) 4 1  contraction 

where 
2 (n- 1)/2 

p =  k [  (g ) + (g) ] (4) 

The second and third problems consider the flow of an inelastic power .-w fluid insic, a square 
cavity where one wall is moving with constant velocity (Figure l(b)) and in a 4 1  contraction 
(Figure l(c)), respectively. The governing equations are 

- 2 p -  +- p -+- =- aax( ::) :y[ (;; :I)] :> 

au a0 -+-=o, 
ax ay 

where 

The equations were discretized using a standard Galerkin finite element u-u-p formulation with 
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triangular-shaped elements which were Co - P 2  for the nodal velocities and Co - P' linear for the 
pressures." 

The square duct problem mesh is shown in Figure 2 (200 elements, 441 nodes or  361 variables). 
The driven cavity mesh for 200 elements is the same as that used for the square duct problem (861 
variables) and the 72 element case is shown in Figure 3 (169 nodes or 300 variables). The pressure 
contours are presented in Figure 4 for the driven cavity problem with a power law index of 0.5 on 
the 200 element mesh, with the appropriate velocity vector solution in Figure 5. The 4:l 
contraction problem mesh is shown in Figure 6 and contains 220 elements (501 nodes or 966 
variables). The pressure contours and velocity vectors are shown in Figures 7 and 8 for a power 
law index of 0.5. 
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Figure 2. Finite element grid, square duct and driven cavity problem, 200 elements 
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Figure 3. Finite element grid, driven cavity problem, 72 elements 
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Figure 4. Pressure contours, driven cavity problem, 200 elemcnt grid; power law index 0.5 
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Figure 5. Velocity vectors, driven cavity problem, 200 element grid; power law index 0.5 
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Figure 6. Finite element grid, 4 1  contraction problem 
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Figure 7. Pressure contours, 4:l contraction problem; power law index 0.5 
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Figure 8. Velocity vectors 4 1  contraction problem; power law index 0.5 

ALGORITHMS 

Picard iteration 

Picard or fixed point iteration is the simplest scheme to implement and is written as 

K(u')u'+' = F. (7) 
The non-linear coefficient matrix terms are evaluated using the values of u from the previous 
iteration and the entire equation set is solved again to determine the new vector quantities. The 
method's convergence rate is asymptotically linear (slow), but it converges for a relatively large 
parameter range and is not very sensitive to the initial vector uo. 

Sometimes the basic scheme is modified by the addition of a weighting factor for the previous 
iteration solution: 

K(ui)u* = F, (8) 

Ui+ l  =au '+ ( l  -a )u* .  (9) 
The factor CI varies between 0 and 1, with c( = 0 being the standard direct substitution case. 

Newton-Raphson 

We solve the following equation set: 
R(u) = K(u)u - F = 0. 
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Using a first-order Taylor series expansion around a nominal point and assuming a relatively small 
change in u from iteration i to iteration i + 1, 

J(u')Au = - R(u'), 
where 

J(ui) = !!! au Iui, 

and b can be used to modify the step length with a line search, to minimize the sum of the residuals 
along a given search direction, if necessary. 

The Newton-Raphson method has a quadratic asymptotic rate of convergence. However, the 
radius of convergence is quite small; i.e., one must start near the solution for very non-linear 
problems. Generally, the initial vector is the solution of a linear version of the problem and a 
parameter is incremented in a series of subproblems to approach the solution of interest. This 
initialization strategy is sometimes called incremental loading or zero-order continuation. The 
superior convergence properties of the method insure that for 'good' choices of the parameter 
increments the subproblems will be solved cost effectively. It is not possible at the present time to 
predict the values of the parameters for the least number of subproblem solutions. It is possible that 
many subproblems must be solved, leading to longer total computation times than expected. 

An automatic extension of a parameter incrementation strategy is to use a first-order 
continuation method (or homotopy method) which uses the Jacobian from the solution to a given 
value of the parameter to predict the next parameter value to be used.' We have not pursued first- 
order continuation method/Newton-Raphson combination approaches in this work. 

Another alternative is the modification of the step length with a line search. The procedure 
increases the radius of convergence considerably' but may still lead to long computation times if 
many line searches are performed. 

The Jacobian for Newton-Raphson iterations was calculated using analytical derivatives of 
the finite element equations for all the examples in this work, and the variation in effective 
viscosity with velocity was included. Finite difference approximations to the derivatives could 
be used but would add another complication in comparing different non-linear equation solving 
schemes. The accuracy of the finite derivative approximation directly affects the rate of 
convergence of the Newton-Raphson method and a whole study would be needed for the effect 
of the perturbation selected in the numerical differencing. 

Quasi-Newton methods 

The major objection to the Newton-Raphson method is the necessity of recalculating Jacobians 
and decomposing the linearized set of equations at every iteration. A quasi-Newton procedure 
(variable metric method) generalizes the Newton-Raphson method3 to 

R'is the residual evaluated at u', Hi is an approximation to the inverse of the Jacobian matrix and si 
is analogous to b of the Newton-Raphson method as a line search variable to force descent in the 
residual sum. The Jacobian inverse approximation is updated at each iteration: 

(1 5 )  Hi+ 1 = Hi + AH'. 

The inverse form of the rank-out update given by Boryden's''-l4 method is 
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Hi+'  = H' + (Aui - Hi A R i ) ( A ~ i T H i ) / ( A ~ i T H i  ARi). (16) 

Note that the Jacobian inverse approximation is a full matrix. The method should be 
implemented to preserve sparsity and not use the full Jacobian matrix approximation as presented 
in the above equations. Update vectors are stored and used to modify an initial approximation to 
the Jacobian inverse matrix. 

The specific Broyden algorithm implemented is that of Engleman et ~ 1 . ~  and Engleman' which 
calculates the updated Hi from the original Jacobian inverse Ho at each iterative cycle. A Broyden 
algorithm to solve R(u) = K(u)u - F = 0 is as follows: 

1. Given uo, Jo (Jacobian matrix after one NR or an approximation to the Jacobian after one PI 
iteration) 
set i = 0 
compute 

Ro = R(uo), Jodo = Ro, do is the initial search direction 

Estimate so with a line search if necessary 
update 

u1 = uo - sodo. 

2. Set i to i +  1 
compute 

R i  = R(ui), Joqi = R' 

if i = 1 go to 4. 
3. F o r j =  1, ..., i -  1 

compute 
qj+ 1 = qj + p j ( 6 j  - rj)&iq.i, 

4. Compute and store 
r i  = qi - di - 1 6i = ui  - ui - 1 - - - si - 1 di - 1 ,  p i  = 1 ,/6iT,.i > 

compute 

d' = qi + p i @ '  - ri)aiTq', the new search direction, 

estimate si with a line search if necessary 
update 

5. If norm of residuals is less than tolerance and norm of the error is less than tolerance, then stop 
else if i < i,,, go to 2 
else stop 

u i +  1 = u i  - sidi. 

In the implementation of the method, the LU factors of the linear equation decomposition that 
were found in step 1 are used as the initial Jacobian inverse. Then, if Broyden's method is 
interchanged with Newton-Raphson, the LU factors provide the inverse of an exact Jacobian, 
whereas if Broyden's method is interchanged with Picard, the LU factors provide the inverse of an 
approximate 'Jacobian'. Step 2 uses the LU factors and so involves only a back-substitution which 
is relatively inexpensive. An alternative would be to use an initial Jacobian found by using uo and 
the analytical derivatives of Ro. 
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While the algorithm uses all the updating vectors previously calculated, in general only a fixed 
number of updating vectors may be used. At the limit of stored update vectors one would restart the 
algorithm with the Jacobian inverse available at that time. Another alternative is to remove the 
oldest update vector and continue with the same fixed number of update vectors using the original 
estimate for the matrix. We investigate both alternatives. The former requires more computer time 
for matrix factorization while the latter option has slower convergence. The specific line search 
algorithm implemented was that of Matthies and Strang." Line searches are not performed 
unless' 

where 

and 

IGI > stol* IGOI, 

G = dTR(u - d), GO = dTR(u) 

stol = 0.5, the tolerance 

Dominant eigenvalue method 

The dominant eigenvalue method16-18 takes into account interaction between variables in 
determining a weighted combination of previous iteration solutions to predict the solution of the 
iteration sequence. The basis of the method is to assume that the iterations approximately follow 
a linear matrix difference equation and compute the apparent solution by using estimates of the 
dominant eigenvalues. 

The basic idea is to do a number of Picard iterations on the equation set, building up an iteration 
history, and then to accelerate the iteration process by predicting the apparent solution from the 
previous iterations. The predicted solution, after u i+ l  is calculated, is given by 

where j = 0,. . . , v and v is the number of dominant eigenvalues. The coefficients p j  are determined 
by minimizing the following expression with respect to the coefficients: 

where 1 d v d i < m and m is the number of equations. Solving the overdetermined set of equations, 

Cpjbjk=O, k =  1,2 ,..., v (19) 

C p j = 1  (204 

P o =  1, (20b) 
b,, = < Aui-1, Aui-  >, (21) 

j 
with (Kaniel-Stein18) 

or (Crowe and Nishio 1 7 )  
j 

provides the coefficients. 
The number of dominant eigenvalues is problem-dependent, but we found that for the problems 

presented in this work only one was needed; i.e., we weighted the i +  1 and i iterations. More 
coefficients may be used, but we found only marginal improvement in computation time. The 
criterion for taking a promotion step is to promote when estimates of the apparent solution on 
iteration i, uip, do not change more than a prescribed amount in the norm compared with the 
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next prediction, ui+ lP. Promoting too frequently leads to numerical instability. The method is 
stabilized by taking a promotion step no more than every v iterations. For the simple one 
dominant eigenvalue case, according to Kaniel and Stein" 

up = ui + P0(Ui+ - ui), 
Po = - b11Mbo1- b1lL 
111 = b01Abo1- hl) 

or according to Crowe and Nishio17 

up = u' + (ui+' - u')/(1 + pl),  

Pl = - bOl/bll. 

Discussion 

The deficiencies of each of the methods can probably be overcome by combining methods for 
different purposes. For example, Picard iteration has a large radius of convergence while Newton- 
Raphson has a fast rate of convergence, so a strategy could be to start with Picard and switch to 
Newton-Raphson. 

Iterative solutions to non-linear equations require a criterion to end the iteration cycles. The 
criterion must not only signal an acceptable solution that is within specified tolerances, but also 
warn of divergence. There is always a trade-off between accuracy and computer time, since high 
accuracy demands many more iterations. Relative error criteria are preferred to absolute error 
criteria because of differences in scale in the nodal variables. 

Two standard termination criteria are that the relative change in the solution vector be less 
than a preset error, 

llAuill d E IIuill, (26) 

IIR(ui) I1 d E. (27) 

and that the value of residual sum be less than a preset error, 

For all matrix factorizations we used an unsymmetric band solver using LU decomposition from 
the LINPACK library (DGBFA and DGBSL). The finite element mesh was generated and 
automatically renumbered for minimum band width using standard mesh techniques. A frontal 
method or a skyline method" for solving the finite element equations may be used, but in this work 
a generally available equation solver was chosen.'' 

RESULTS 

For all runs performed, the Newtonian problem was solved first to obtain an initial solution and 
then a Picard or Newton-Raphson iteration was performed with the power law index set to the 
first subproblem. Then either Picard, Newton-Raphson, Broyden or DE was performed with or 
without line search. The single iteration needed to obtain the Newtonian (linear) solution is not 
included in the iteration count for the non-linear problem. The convergence criterion used was that 
the norm of the residuals be less than All runs were performed on a VAX8600 computer in 
double precision. 

In cases using the Broyden method, one Picard or Newton-Raphson iteration is performed after 
every four Broyden iterations except where noted. This strategy proved to stabilize the procedure, 
leading to convergence even for very non-linear cases (power law index n = 0.2). 
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Table I. Square duct 

Method Total iteration No. of line searches CPU time(s) 

n = 0 5  
NR 6 2 69.1 
PI 16 - 123.0 
DE-1 10 - 82.5 
BR-P 15 11 49.1 
BR-N 8 11 43.9 

n = 0.3 
NR 13 26 147.2 
PI 31 - 186.5 
DE-I 19 - 148.4 
BR-P 20 29 72.2 
BR-N 31 85 165.0 

Table I shows that, for the square duct problem, all the methods converged for n = 0.5 and 
Broyden’s method was fastest in total computer time. The solution is very regular. DE-1 signifies 
that only one dominant eigenvalue was assumed. In the case of n = 0.3 the NR method would not 
converge from the Newtonian case, while it converges with the use of line searches. The cost of NR 
with line searches is equal to that of the DE method. Note that in the case where the Broyden 
algorithm uses an approximate Jacobian (from a Picard iteration), the solution proceeds without 
difficulty, whereas in the case where an exact Jacobian (from a Newton-Raphson iteration) is used, 
convergence was achieved with some difficulty. The method needed an excessive number of line 
searches, resulting in a high cost. The superior properties of the Picard iteration with respect to the 
radius of convergence seem to stabilize Broyden’s algorithm. 

Table I1 shows the results for the driven cavity problem with 72 elements. For n = 0.5 Broyden’s 
method is very fast relative to the other methods. At n = 0.3 the Picard is quite slow and Newton- 
Raphson cannot converge from the Newtonian solution unless line searches or continuation are 
performed. What is significant is that the DE works for every case at a cost approximately half that 
of the Picard and comparable with that of Newton-Raphson in the very non-linear case of n = 0.2. 
Broyden’s method with an approximate Jacobian is able to converge with the lowest cost, even 
when no line searches are performed. However, NR required the implementation of line searches or 
continuation and Broyden’s method required some strategy to obtain a solution (which was not 
obvious), while the DE required no extra steps at all. When the 200 element case is compared 
in Table I11 it is seen that for n=0.5 and n=0.3 DE requires half the cost of Picard, while 
Broyden’s method is again the fastest, but when the exact Jacobian is used in the case of n = 0.3 
the algorithm will not converge. In the case of n=0.5 Broyden’s method with approximate 
Jacobian did not require any line searches, while in the 72 element case it required four line 
searches. The significant result is that for the case of n = 0.2 the DE method is faster than the 
NR, which required line searches to converge. 

Table IV shows the results for the 4:l contraction problem, which was the most difficult problem 
of the group, mainly because of the variety of flow regimes in the solution. For n = 0.5 Newton- 
Raphson with line searches and Broyden with exact Jacobian are surprisingly time-consuming, 
while DE and Broyden with approximate Jacobian have no difficulties. However, in the n = 0.3 
case Broyden with line searches and exact Jacobian would not converge, while the case with 
approximate Jacobian had convergence difficulties, leading to high computation times. Note that 
the Broyden with approximate Jacobianln = 0.5 case did not have any difficulty in the square duct 
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Table 11. Driven cavity, 72 elements 

Method Total iterations No. of line searches CPU time(s) 

n = 0.5 
NR 
PI 
DE-1 
DE-3 
BR-P 
BR-N 

7 
21 
13 
14 
14 
10 

105 
184 
119 
130 
55 
89 

n = 0.3 
NR 
NR* 
PI 
DE- 1 
BR-P 
BR-P 
BR-N 

9 
t 8  
49 
24 
23 
25 
16 

134 
244 
417 
210 
73 
99 

152 

n = 0.2 
NR 
DE- 1 
BR-P 

20 
35 
49 

296 
305 
137 

* Newton-Raphson method without line search required a series of subproblems of n = 1, 
n = 0.5, n = 0.35, n = 0.3 for convergence and the time is total of all CPU times. One Picard 
iteration was performed before switching to Newton-Raphson in all subproblems. 

Table 111. Driven cavity, 200 elements 

Method Total iterations No. of line searches CPU time@) 

n = 0.5 
NR 8 1 682 
PI 18 1221 
DE-1 11 775 
DE-3 13 958 
BR-P 14 0 313 
BR-N 11 8 452 

- 

- 

- 

_ _ _ _ _ -  __ 
n = 0.3 

NR 13 15 1087 
PI 34 2254 
DE- 1 20 1367 
BR-P 30 558 
BR-P 23 28 549 
BR-N Divergence 

- 

- 

- 

-~ ~~~ 

n = 0.2 
NR 26 49 2165 
DE-1 29 1986 - 
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Table IV. 4:l contraction 

Method Total iterations No. of line searches CPU time@) 

n = 0.5 
NR 10 
PI 21 
DE-1 12 
DE-3 14 
BR-P 17 
BR-N 16 

10 
~ 

- 

3 
24 

41 1 
457 
276 
312 
183 
43 1 

n = 0 3  
NR 13 16 
PI 38 
DE-1 18 
BR-P 28 
BR-P 33 52 
BR-N Divergence 

__ 
~ 

- 

516 
798 
398 
230 
414 
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Figure 9. Logarithm of the norm of residuals versus iteration number: driven cavity problem, 72 elements; power law 
index 0.5 

or the driven cavity, and this is an example of how methods can fail depending on the specific 
fluid/geometry problem. DE converged without any special steps for both n = 0.5 and n = 0.3 cases 
from the Newtonian solution, and what is more significant is that in the case of n = 0-3 DE was the 
fastest, surpassed only by Broyden without line searches. 

The results in the cases where line searches were performed are in general agreement with those of 
Engelman’ for the Picard, Broyden and Newton-Raphson methods. 

Figure 9 shows a plot of the norm of the residuals versus the iteration number for the 72 element 
driven cavity, and Figure 10 for the 4:l contraction. In both plots, NR converges very rapidly, 
Picard very slowly and the other methods are somewhere in between. The tables also point out the 
fact that even though NR has few iterations, the iterations are expensive because they entail a 
Jacobian evaluation and a matrix factorization. The cost of the algorithms increases when 
excessive line searches are performed. In Tables I-IV the number of line searches shown is the 
number of function evaluations within the line search subroutine. 
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Figure 10. Logarithm of the norm of residuals versus iteration number: 4 1  contraction problem; power law index 0 5  

CONCLUSIONS 

Broyden’s method is the least expensive solution method computationally, but does not converge 
for strongly non-linear problems. One solution is to reform the Jacobian matrix after a prescribed 
number of Broyden iterations. The use of an approximate initial Jacobian (Picard) seems to 
increase the radius of convergence of the method more than the use of an exact initial Jacobian 
(Newton-Raphson), which seems to have a better rate of convergence. Line searches did not 
always help the convergence of the algorithm. The Newton-Raphson method for strongly non- 
linear problems requires line searches or continuation to converge. The cost in some cases becomes 
excessive. The dominant eigenvalue method appears to be robust and converged in all cases 
examined without any additional steps required. In very non-linear cases, the dominant eigenvalue 
proved faster than the Newton-Raphson method. Dominant eigenvalue is very simple to 
implement and provides an alternative for users who want to keep a Picard iteration as the basic 
iteration scheme. 
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NOTATIONS 

bj, 
BR Broyden’s method 
BR-N 
BR-P 
a search direction 
DE-1 One dominant eigenvalue 
DE-3 Three dominant eigenvalues 
f vector of functions 

inner product used in DE method, equation (21) 

Broyden’s method interchanged with Newton-Raphson 
Broyden’s method interchanged with Picard 
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F 
H 
J 
K 
k 
n 
NR 
PI 
P 
P i ,  P j  

9 
R 
r 
s 
u 
U 

iP 

U 
V 

load vector 
approximation to the inverse of the Jacobian matrix 
Jacobian matrix 
‘stiffness’ matrix 
material constant of power law model 
power law index 
Newton-Raphson 
Picard 
pressure 
used in Broyden’s algorithm 
vector used in Broyden’s algorithm 
vector of residuals 
vector used in Broyden’s algorithm 
line search variable, equation (14) 
velocity in x-direction 
vector of unknowns 
predicted solution in DE method, equation (17) 
velocity in y direction 
velocity vector 

Greek letters 

weighting factor, equation (8) 
damping factor, equation (12) 
rate-of-strain tensor 
vector used in Broyden’s algorithm 
tolerance 
dominant eigenvalue, viscosity 
number of dominant eigenvalues 
extra stress tensor 

Subscripts, superscripts 

i,j, k dummy indices 

Symbols 

<.?.) inner product 
11.1l norm 
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